Abstract

We show with numerical computation and analysis that Bloch waves, at either the center or edge of the Brillouin zone, of a one dimensional nonlinear periodic system can be regarded as infinite chains composed of fundamental gap solitons (FGSs). This composition relation between Bloch waves and FGSs leads us to predict that there are n families of FGSs in the nth band gap of the corresponding linear periodic system, which is confirmed numerically. Furthermore, this composition relation can be extended to construct a class of solutions similar to Bloch waves but with multiple periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.