Abstract

ABSTRACTEcological networks are becoming increasingly used as a framework to study epiphyte–host interactions. However, efforts to quantify the properties of epiphyte–host networks have produced inconsistent results. Epiphyte–host interactions in New Zealand and Chilean temperate forests were quantified to test for non-random patterns in nestedness, negative co-occurrences, number of links, and network specialisation. Results showed that three out of five New Zealand networks were significantly more nested than null model expectations, compared with just one out of four Chilean networks. Epiphytes co-occurred more often than null model expectations in one New Zealand network and one in Chile. In all cases, the number of links maintained by each epiphyte and host species was consistent with null model expectations. Lastly, two New Zealand networks and one in southern Chile were significantly less specialised than null model expectations, with all remaining networks returning low specialisation scores. As such, aside from the tendency for greater nestedness in New Zealand networks, most epiphyte species were distributed on their host trees at random. We attribute the result of nestedness in New Zealand to the abundance of large nest epiphytes (Astelia spp. in particular), which may facilitate the sequential colonisation of epiphyte species on developing host trees. The lack of negative co-occurrences suggests that negative species interactions are not an important determinant of species assemblage structure. Low network specialisation scores suggest that epiphytes are selecting for specific host traits, rather than specific host species for colonisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call