Abstract
Dissolved organic matter (DOM), a heterogeneous mixture of diverse compounds with different molecular weights, is crucial for the lake carbon cycle. The properties and concentration of DOM in lakes are closely related to anthropogenic activities, terrigenous input, and phytoplankton growth. Thus, the lake's trophic state, along with the above factors, has an important effect on DOM. We determined the DOM sources and molecular composition in six lakes along a trophic gradient during and after phytoplankton bloom by combining optical techniques and the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). CDOM pools in eutrophic lakes may be more biologically refractory than in oligotrophic and mesotrophic lakes. Molecular formulas of DOM were positively correlated with the TSI (trophic state index) value (R2 = 0.73), with the nitrogen-containing compounds (CHON) being the most abundant formulas in all studied lakes. Eutrophication modified the molecular formulas of DOM to have less CHO% and more heteroatom S-containing compounds (CHOS% and CHNOS%), and this was the synactic result of the anthropogenic perturbation and phytoplankton proliferation. In eutrophic lakes, summer DOM showed higher molecular lability than in autumn, which was related to the seasonal phytoplankton community succession. Although the phytoplankton-derived DOM is highly bioavailable, we detected a simpler and more fragile phytoplankton community ecosystem in autumn, which may be accompanied by a lower phytoplankton production and metabolic activity. Therefore, we concluded that the lake eutrophication increased the allochthonous DOM accumulation along with sewage and nutrient input, and subsequently increased its release with phytoplankton bloom. Eutrophication and phytoplankton growth are accompanied by more highly unsaturated compounds, O3S+O5S compounds, and carboxylic-rich alicyclic compounds (CRAMs), which are the biotransformation product of phytoplankton-derived DOM. Eutrophication may be a potential source of refractory DOM compounds for biodegradation and photodegradation. Our results can clarify the potential role of water organic matter in the future global carbon cycle processes, considering the increasing worldwide eutrophication of inland waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.