Abstract

Molecular dynamics (MD) simulations are performed to study the composition-dependent elastic modulus and thermal conductivity for carbon/silicon core/shell nanowires (NWs). For each concerned carbon/silicon core/shell NW with a specified diameter, it is found that elastic modulus is reduced with a linear dependence on cross-sectional area ratio. The fact matches well with the results of theoretical model. Analysis based on the cross-sectional stress distribution indicates that the core region of core/shell NW is capable of functioning as a mechanical support. On the other hand, thermal conductivity also relies on the cross-sectional area ratio of amorphous silicon shell. The core/shell interface plays a considerable influence on the thermal transport property. The decreasing rate of thermal conductivity is gradually decreased as the composition of amorphous silicon shell increases. In addition, by calculating the phonon density of state, we demonstrate that the reduction in thermal conductivity of the core/shell NW stems from the increase of the low frequency modes and the depression of high-frequency nonpropagating diffusion modes. These results provide an effective way to modify the properties of core/shell NWs for related application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.