Abstract

We perform non-equilibrium molecular dynamics calculations to study the heat transport in crystalline-core amorphous-shell silicon nanowires (SiNWs). It is found that the thermal conductivity of the core-shell SiNWs is closely related to the cross-sectional area ratio of amorphous shell. Through shell amorphization, an 80% reduction in thermal conductivity compared to crystalline SiNWs with the same size can be achieved, due to the non-propagating heat diffusion in the amorphous region. In contrast to the strong temperature-dependent thermal conductivity of crystalline SiNWs, the core-shell SiNWs only show weak temperature dependence. In addition, an empirical relation is proposed to accurately predict the thermal conductivity of the core-shell SiNWs based on the rule of mixture. The present work demonstrates that SiNWs with an amorphized shell are promising candidates for thermoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.