Abstract

Material composition plays a crucial role in the device performance; thus, nonvolatile memory devices from a small molecule named 5-mercapto-1-methyl tetrazole (MMT) in an insulating polymer matrix of poly(4-vinyl pyridine) (PVP) were fabricated. The composition of the active material in the device was varied to observe its influence on the device’s electronic properties. The device with a more or less weight ratio of MMT has a much smoother surface morphology, whereas when the contributions of MMT and PVP were equal, the average surface roughness increased. However, the maximum on–off current ratio for all the devices is 105, suggesting that the MMT molecule does not show any change in its characteristic properties when surrounded by an insulating material. When the device was fabricated without the polymer matrix, the surface morphology of the device completely changed as it was filled with large holes. These holes provide short-circuited pathways for the current by forming the direct metal contact between the top and bottom electrodes. The carrier transport through these devices follows various conduction mechanisms. Some of the dominating conduction mechanisms are direct tunneling and trap-free and trap-assisted space–charge-limited conduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.