Abstract
Gasification technology enables the clean and efficient utilization of coal. However, the process generates a significant amount of solid waste—coal gasification slag. This paper focuses on the Jinhua furnace coal gasification slag (fine slag, FS; coarse slag, CS) as the research subject, analyzing its composition and structural characteristics, and discussing the thermochemical conversion performance of both under different atmospheres (N2 and air). The results show that the fixed carbon content in FS is as high as 35.82%, while it is only 1% in CS. FS has a large number of fluffy porous carbon on its surface, which wraps around or embeds into smooth and variously sized spherical inorganic components, with a specific surface area as high as 353 m2/g, and the pore structure is mainly mesoporous. Compared to the raw coal (TYC), the types of organic functional groups in FS and CS are significantly reduced, and the graphitization degree of the carbon elements in FS is higher. The ash in FS is mainly amorphous and glassy, while in CS, it mainly has crystalline structures. The weight loss rates of TYC and FS under an inert atmosphere are 27.49% and 10.38%, respectively; under an air atmosphere, the weight loss rates of TYC and FS are 81.69% and 44.40%, respectively. Based on the analysis of the thermal stability of FS and its high specific surface area, this paper suggests that FS can be used to prepare high-value-added products such as porous carbon or high-temperature-resistant carbon materials through the method of carbon–ash separation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have