Abstract

Thermal waters with discharge temperatures ranging from 32 to 70°C are being discharged along the Gulf of Suez (Egypt) from springs and shallow artesian wells. A comprehensive chemical and isotopic study of these waters supports previous suggestions that the waters are paleometeoric waters from the Nubian sandstone aquifer. The chemical and isotopic compositions of solutes indicate possible contributions from Tertiary sedimentary aquifer rocks and windblown deposits (marine aerosols and/or evaporite dust) in the recharge area. There is no chemical or isotopic evidence for mixing with Red Sea water. Gas effervescence from the Hammam Faraoun thermal water contains about 4% CH 4 (δ 13C = −32.6‰) and 0.03% He having an isotopic ratio consistent with a mixture of crustal and magmatic He ( 3He/ 4He = 0.26 Re). Geothermometers for the thermal waters indicate maximum equilibration temperatures near 100°C. The waters could have been heated by percolation to a depth of several km along the regional geothermal gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call