Abstract
Aubrites are achondritic meteorites (enstatite pyroxenites) that were formed in highly reduced magmatic environments on a differentiated parent body sharing a common oxygen isotope reservoir with enstatite chondrites (EC), Earth and Moon, and could be considered as a geochemical model of the early proto-Earth. Some pyroxenes of the Pesyanoe aubrite have high abundance of gaseous inclusions, captured during the crystallization of the rocks. Investigation of the inclusions by IR spectroscopy reveals presence of OH− groups and C–H bonds. The former are assigned to protonated point defects in enstatite lattice and the latter to compounds occupying void walls. Molecular water and CO2 were not observed. Volatile components released from the samples of the Pesyanoe enstatite by stepwise crushing and heating are composed of CO2, H2O and a non-condensable phase. Hydrogen isotopic composition of volatiles extracted in form of molecular water in Px-separates varies in the range δD = −61 – −84‰ with mean value of δD = −73 ± 16‰ VSMOW and is within the ranges of ECs and Earth’s mantle. The total abundance of H2 in the pyroxene of Pesyanoe were estimated as at least 0.047 ppm that is too low in comparison with that of enstatite chondrites (≥30 ppm H2) and could indicate nearly complete degassing of the Pesyanoe primitive precursor material during the Pesyanoe parent body accretion or a mantle degassing in igneous differentiation process. In a last case a primitive precursor could have D/H ratio different from that of enstatite chondrites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.