Abstract
We report on the structure and magnetic properties of Mn based ferromagnetic layers on the semiconductor SixGe1-x-ySny with Sn content up to y = 0.15 in comparison with layers on Ge and Si0.75Ge0.25. The ferromagnetic layers grow by interdiffusion between an evaporated Mn layer and molecular-beam-epitaxy grown semiconductor layers. This approach enables the preparation of Mn based layers, e.g., as a ferromagnetic contact material for SixGe1-x-ySny using a self-aligned interdiffusion process, opening up the opportunity for large-scale manufacturing. The samples show a clear phase separation into Si-rich and Ge-rich Mn compounds. All samples are ferromagnetic and exhibit a decrease in saturation magnetization and an increase in coercive field with increasing Si content x. The Curie temperature shows no decisive trend with increasing Si content with values around room temperature. Based on the composition, structure and magnetic properties, we propose a two-layer model to correlate the structure and composition with the observed magnetic properties. We show that the changes in magnetic behavior can be explained solely by considering the Si content of the SixGe1-x-ySny substrates with the Sn being largely passive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.