Abstract

A variety of deep-seated xenoliths occur within the Mesozoic Jiagou dioritic porphyry in the southeastern margin of the North China Craton (NCC). In this study we present a combined petrologic, geochronological, Hf isotope and geochemical study on the different types of xenoliths and use these data to better constrain the composition and age of the deep crust beneath the area. Most of the xenoliths are mafic meta-igneous rocks, among which garnet-bearing lithologies are common. The xenoliths can be classified into three broad petrographic groups: spinel-bearing garnet clinopyroxenite/phlogopite clinopyroxenite/spinel pyroxenite (Group 1), garnet amphibolite or hornblendite/garnet granulite/mafic gneiss lacking pyroxene (Group 2), and garnet-bearing felsic (intermediate-acid) gneiss (Group 3). Among these, the mafic–ultramafic rocks constitute the dominant category. The protoliths of the studied xenoliths range from basalt through andesite to dacite. Geochemical and Hf-isotope data indicate that most xenoliths belonging to Groups 2 and 3 resemble magmatic rocks formed at convergent continental margin arc setting. A few of them (mostly belonging to Group 1) represent mantle-derived products. Multiple metasomatic imprints, with contribution from subduction-related or mantle-derived fluids or melts have been recognized from the multistage mineral assemblages and ages.SHRIMP zircon U–Pb dating, Hf isotope and geochemical data offer evidence for subduction-related adakite-like and arc-related rocks in the southeastern margin of the NCC at ca. 2.5Ga and 2.1Ga, and confirm the occurrence of high-pressure granulite-facies metamorphism at ca. 1.8Ga. These data suggest an episodic growth of Precambrian lower crust beneath this region in response to two stages of subduction–accretion and one vertical accretion of mantle-derived basaltic magma at the base of the lower crust. Additionally, a previously unknown late mantle-derived basaltic magmatism at 393±7Ma has also been recognized. The data presented in this paper demonstrate that the deep crust beneath the southeastern margin of the NCC is composed of hybrid protoliths derived from Paleozoic, Paleoproterozoic and late Neoarchean sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call