Abstract
We have developed a method for designing polymer and graphene nanoplatelet (GNP) composites that show high dielectric constants over a wide range of GNP contents. GNPs are dispersed in the composites through plasma-surface modification and aligned by applying an electric field (EF). This creates a large number of microcapacitor structures of GNPs separated by the polymer. The maximum dielectric constant of the sample to which the EF is applied is approximately twice that of the sample to which the EF is not applied. Furthermore, the maximum dielectric constants of the samples with plasma-surface modified GNPs are higher than those of the samples with unmodified GNPs. The composites show high dielectric constants (∼500 at 100 Hz) over a wide range of GNP contents (6 ∼ 10 wt%) while maintaining mechanical flexibility (Young’s modulus:12 ± 4 MPa).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.