Abstract

In present study, the microstructure, mechanical and electrochemical properties of aluminum–graphene nanoplatelets (GNPs) composites were investigated before and after extrusion. The contents of graphene nanoplatelets (GNPs) were varied from 0.25 to 1.0wt.% in aluminum matrix. The composites were fabricated thorough powder metallurgy method, and the experimental results revealed that Al-0.25%GNPs composite showed better mechanical properties compared with pure Al, Al-0.50%GNPs and Al-0.1.0%GNPs composites. Before extrusion, the Al-0.25%GNPs composite showed ~13.5% improvement in ultimate tensile strength (UTS) and ~50% enhancement in failure strain over monolithic matrix. On the other hand, Al-0.50%GNPs and Al-0.1.0%GNPs composites showed the tensile strength lower than monolithic matrix. No significant change was observed in 0.2% yield strength (YS) of the composites. However, the extruded materials showed different trends. The 0.2%YS of composites increased with increase in GNPs filler weight fractions. Surprisingly, UTS of composites with 0.25 and 0.50% GNPs was lower than monolithic matrix. The failure strain of the baseline matrix was enhanced by ~46% with 0.25% graphene nanoplatelets. The superior mechanical properties (in terms of failure strain) of the Al-0.25%GNPs composite maybe attributed to 2-D structure, high surface area and curled nature of graphene. In addition, the corrosion resistance of pure Al and its composites reinforced with 0.5 and 1.0wt% GNPs was also investigated. It was found that the corrosion rate increased considerably by the presence of GNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.