Abstract

Sr–Fe oxides are suitable oxygen carriers (OCs) with excellent cyclic stability. However, the moderate redox activity causes a deficiency in H2 yield in chemical looping reforming coupled with water splitting (CLR-WS) process. Herein, we designed and prepared the composite xNiFe2O4/(1-x)SrFe12O19 OCs by ball milling method, which exhibited both high redox activity and high cyclic stability during reactions. A series of characterizations showed that the introduction of NiFe2O4 promoted the oxygen vacancy formation and the release of lattice oxygen, facilitating the reforming of bioethanol in fuel reactor (FR). During CLR-WS process, a high carbon conversion of 79.20 % and a H2 yield of 13.23 mmol/g OC were achieved by 3Ni7Sr OC at 800 °C, outperforming that of the conventional SrFe12O19 OC. Moreover, the severe carbon deposition and sintering issues inherent to NiFe2O4 were avoided due to the presence of Sr. All Sr-containing composite OCs showed H2 purity exceeding 99.26 % and excellent cycling stability with no apparent activation of oxygen transport capacity over 3000 min redox reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.