Abstract

We report results of a detailed experimental study on capillary properties of new composite structures produced by simultaneous sintering of fibers and particles. This study suggests a way to meet the contradictory requirements to produce efficient evaporator to be used e.g. in capillary pump loops (CPL). In CPL, a porous evaporator is responsible of the displacement of the working liquid absorbing heat by its vaporization and releasing this heat at a remote condenser. The permeability of the porous evaporator of an efficient capillary pump must be as large as possible, but simultaneously this pump has to produce the largest capillary pressure at level of vapor/liquid interface in pores of very small diameters. We investigated new sintered composite capillary structures; such materials have the possibility to take advantage of both fibers and powder. It was found when forming highly porous plane samples that different macrostructures can appear depending on the ratio of fibers and powder dimensions, and also of the thicknesses of the different layers. This is opening the road to the use of different macrostructures; the possibility to produce multilayer structures is very promising regarding optimization of the parameters pore diameters and permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.