Abstract
Stents are vital devices to treat vascular stenosis in pediatric patients with congenital heart disease. Bioresorbable stents (BRSs) have been applied to reduce challenging complications caused by permanent metal stents. However, it remains almost a total lack of BRSs with satisfactory compression performance specifically for children with congenital heart disease, leading to importantly suboptimal effects. In this work, composite bioresorbable prototype stents with superior compression resistance were designed by braiding and annealing technology, incorporating poly (p-dioxanone) (PPDO) monofilaments and polycaprolactone (PCL) multifilament. Stent prototype compression properties were investigated. The results revealed that novel composite prototype stents showed superior compression force compared to the control ones, as well as recovery ability. Furthermore, deformation mechanisms were analyzed by computational simulation, which revealed bonded interlacing points among yarns play an important role. This research presents important clinical implications in bioresorbable stent manufacture and provides further study with an innovative stent design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.