Abstract
ObjectivesTo compare on the bench the physical and mechanical properties of Magmaris, a magnesium bioresorbable scaffold (BRS), with Absorb and DESolve polymeric BRS and a permanent metallic stent.BackgroundUnderstanding the mechanical and physical properties of BRS is crucial for appropriate implantation and postdilatation.MethodsTesting was performed in fluid at 37°C and in silicone bifurcation phantoms with a 30° angle between main branch (MB) and side branch.ResultsThe 3.0‐mm Magmaris BRS did not fracture after MB postdilatation up to 4.4 mm in contrast to the Absorb where the safe postdilatation diameter was 3.7 mm. For dilatation through stent cells, there were no Magmaris fractures with 3.0‐mm noncompliant (NC) balloons inflated to nominal pressure. Mini‐kissing balloon postdilatation with two 3.0‐mm NC balloons up to 17 atm was without fracture except for an outlier. Longitudinal and radial strengths were similar for Magmaris and Absorb BRS. The crossing profile for the Magmaris was larger than other devices. Recoil 120 min after deployment was the greatest for Magmaris but 120 min after 3.5 mm postdilatation all devices had similar diameters.ConclusionsThe Magmaris BRS was more resistant to strut fracture than Absorb. It had a larger crossing profile than other devices and similar radial and longitudinal strengths to Absorb. While recoil after deployment was greater with Magmaris, 120 min after 3.5 mm postdilatation all devices had similar diameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.