Abstract

The class of composite likelihood functions provides a flexible and powerful toolkit to carry out approximate inference for complex statistical models when the full likelihood is either impossible to specify or unfeasible to compute. However, the strength of the composite likelihood approach is dimmed when considering hypothesis testing about a multidimensional parameter because the finite sample behavior of likelihood ratio, Wald, and score-type test statistics is tied to the Godambe information matrix. Consequently, inaccurate estimates of the Godambe information translate in inaccurate p-values. The approach based on a fully nonparametric saddlepoint test statistic derived from the composite score functions is shown to achieve accurate inference. The proposed statistic is asymptotically chi-squared distributed up to a relative error of second order and does not depend on the Godambe information. The validity of the method is demonstrated through simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.