Abstract
Composite likelihood functions are often used for inference in applications where the data have a complex structure. While inference based on the composite likelihood can be more robust than inference based on the full likelihood, the inference is not valid if the associated conditional or marginal models are misspecified. In this paper, we propose a general class of specification tests for composite likelihood inference. The test statistics are motivated by the fact that the second Bartlett identity holds for each component of the composite likelihood function when these components are correctly specified. We construct the test statistics based on the discrepancy between the so-called composite information matrix and the sensitivity matrix. As an illustration, we study three important cases of the proposed tests and establish their limiting distributions under both null and local alternative hypotheses. Finally, we evaluate the finite-sample performance of the proposed tests in several examples.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.