Abstract

In this study, geopolymers based on mechanically activated mixtures of fly ash (FA) with SrCO3 (strontianite) and BaCO3 (witherite) were synthesized. NaOH solution was used as an alkaline agent and curing was carried out under ambient conditions. XRD, FTIR spectroscopy, thermogravimetry, and SEM were used to study the geopolymerization process and microstructure. The product of geopolymerization of the milled (FA + SrCO3) and (FA + BaCO3) blends was X-ray amorphous N-A-S-H gel. The beneficial impact of mechanical activation on the compressive strength of geopolymers was most evident during the initial stages of the curing process. The strength of geopolymers based on the (FA + carbonate) blends after 7 d was either less than the corresponding strength of geopolymers based on the 100% FA or, within the measurement accuracy, equal to it. With increasing curing time, the strength development of geopolymers synthesized from (70% FA + 30% carbonate) blends exceeded the strength growth of geopolymers containing less carbonates; after curing for 180 d, these geopolymers showed the highest compressive strength (20–27 MPa). This trend was more pronounced for the geopolymers based on the (FA + SrCO3) blends. The influence of SrCO3 and BaCO3 addition to the FA on the strength of composite geopolymers was explained by dilution and microfiller effects. The geopolymers based on the FA blended with SrCO3 and BaCO3 exhibit potential applications in immobilizing radioactive strontium and producing radiation shielding materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call