Abstract
We present a composite generalized Langevin equation as a unified framework for bridging the hydrodynamic, Brownian, and adhesive spring forces associated with a nanoparticle at different positions from a wall, namely, a bulklike regime, a near-wall regime, and a lubrication regime. The particle velocity autocorrelation function dictates the dynamical interplay between the aforementioned forces, and our proposed methodology successfully captures the well-known hydrodynamic long-time tail with context-dependent scaling exponents and oscillatory behavior due to the binding interaction. Employing the reactive flux formalism, we analyze the effect of hydrodynamic variables on the particle trajectory and characterize the transient kinetics of a particle crossing a predefined milestone. The results suggest that both wall-hydrodynamic interactions and adhesion strength impact the particle kinetics.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have