Abstract

This paper reports on the complex relation between rock emplacement and remanence acquisition in tuffs deposited by pyroclastic density currents, disclosed by systematic measurements of the anisotropy of magnetic susceptibility and natural remanent magnetization (NRM). Thermal demagnetization shows that the NRM consists of two components with different blocking-temperature spectra. The direction of the low-temperature component is consistent with the geocentric axial dipole value, whereas the high-temperature component has dispersed directions. The magnetic fabric is oblate, the magnetic foliation is close to the bedding and the lineations are generally dispersed along a girdle within the foliation plane. The directions of the magnetic lineation and the high-temperature remanence component of individual specimens are close to each other. This correspondence suggests that the high blocking-temperature grains acquired a remanence aligned to their long dimension before deposition, while cooling within the explosive cloud and the moving pyroclastic current. Thereafter, during deposition, the traction processes at the base of the current oriented the grains along the flow direction and affected both fabric and high-temperature remanence. This NRM component results from mechanical orientation of previously magnetized grains and is thus detrital in origin. A second, thermal component was then acquired during the cooling of the low blocking-temperature grains after deposition. These results show that NRM in fine-grained pyroclastic rocks is affected by the Earth’s magnetic field as well as the emplacement processes and that magnetic fabric data are essential to unravel its complex nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call