Abstract
The natural remanent magnetization (NRM) in individual chondrules from the Allende meteorite was measured. These had previously been oriented relative to each other. The NRM directions of the chondrules are not initially random, but they become scattered after either alternating field (AF) or thermal demagnetization. The NRM is less stable than anhysteretic remanent magnetization (ARM) against AF-demagnetization. The bulk of the NRM in the matrix is erased by 300°C. For the larger chondrules it is erased by 550°C, but for the smaller chondrules and the white inclusion a substantial decrease in NRM occurs by 350°C leaving about 20% up to 600°C. The behavior of the laboratory-induced ARM and the NRM under alternating field demagnetization suggest that the NRM of the chondrules consists of at least two components of TRM. One is a high-temperature component which was acquired when the individual chondrules were cooled through the Curie temperature and before they were assembled into the Allende meteorite. The other is a low-temperature component which was probably acquired in a field of about 1 Oe when the meteorite experienced thermal metamorphism or during the assembly of the meteorite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.