Abstract

The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on the background of the soft soil in Shantou, Guangdong Province, a series of experimental studies on the consolidation characteristics were carried out by using the modified consolidation instrument. And the concept of the composite consolidation coefficient of the drained water body was put forward. The composite consolidation coefficient reflects the consolidation characteristics of soft soil with drainage water, The test results showed that: 1) The consolidation test with drainage plate is basically consistent with the load compression curve, but its consolidation rate is fast, which is reflected by the composite consolidation coefficient. 2) In the consolidation test of water bodies with drainage, the vertical consolidation coefficient and radial consolidation coefficient are calculated by “three-point method”, and then the composite consolidation coefficient is obtained. The composite consolidation coefficient decreases with the increase of drain spacing ratio, effective drainage diameter and drainage height, which is basically consistent with the theoretical formula. 3) The vertical consolidation coefficient and radial consolidation coefficient decrease with the increase of the diameter of the sample, and the difference is obvious when the load is large. The large-size model with a diameter of 100 mm and a height of 100 mm is about 1.35 times of the vertical consolidation coefficient of the conventional consolidation test.

Highlights

  • The composite consolidation coefficient reflects the consolidation characteristics of soft soil with drainage water, The test results showed that: 1) The consolidation test with drainage plate is basically consistent with the load compression curve, but its consolidation rate is fast, which is reflected by the composite consolidation coefficient

  • The composite consolidation coefficient decreases with the increase of drain spacing ratio, effective drainage diameter and drainage height, which is basically consistent with the theoretical formula

  • Based on the modified consolidation instrument, Lei Huayang carried out a series of experimental studies on the consolidation characteristics of soft soil filled by blowing after vacuum preloading treatment in Tianjin, focusing on the influence of sample size on the consolidation characteristics of soft soil filled by blowing [4]

Read more

Summary

Introduction

Lei Huayang [7], in order to explore the consolidation characteristics of blowing-filled ultra-soft soil and the influence rule of water content and loading ratio on the secondary consolidation coefficient, carried out the consolidation test with graded loading by using the modified low-pressure consolidation instrument and the conventional high-pressure consolidation instrument. Through the automatic acquisition and displacement of the reformed large-scale consolidation instrument, the consolidation test of soft soil is carried out, and the drainage plate is added in the middle of the model, which can more intuitively reflect the actual consolidation and drainage situation of engineering, and compare and analyze with the conventional test to explore the large-size consolidation rule of drainage unit and provide reference for engineering application

Theoretical Formula of Composite Consolidation Coefficient
Experimental Materials
Test Scheme
Consolidation Test Analysis of Different Drainage Channels
Analysis of Drainage Consolidation Test Results of Different Sizes
Consolidation Coefficient Analysis of Single and Double Drainage
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.