Abstract

A solid acid catalyst SO42−/SnO2-Al2O3-CFA was synthesized based on industrial waste coal fly ash (CFA) as carrier and applied in the conversion of oxalic acid pretreated corn stover hydrolysate to produce furfural. Physical properties of the solid acid catalyst were characterized by SEM, FTIR, XRD, BET, EDAX, and NH3-TPD. Highly wrinkled structure of SO42−/SnO2-Al2O3-CFA could provide more specific surface area for the covalent linkage between SiO2 and SnO2. Factors influencing the efficacy of SO42−/SnO2-Al2O3-CFA were systematically explored. The highest furfural yield of 84.7% was reached in NH4Cl-toluene biphasic system at 180 °C for 30 min. The recyclability of SO42−/SnO2-Al2O3-CFA and toluene could be achieved for five batches with stable performance in transformation of xylose-rich corn stover hydrolysate. This study provided a novel solid acid catalyst with promising potential in the synthesis of furfural from corn stover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.