Abstract
We show that an ansatz based on independent composite bosons [Phys. Rep. 463, 215 (2008)] accurately describes the condensate fraction of molecular Bose-Einstein condensates in ultracold Fermi gases. The entanglement between the fermionic constituents of a single Feshbach molecule then governs the many-particle statistics of the condensate, from the limit of strong interaction to close to unitarity. This result strengthens the role of entanglement as the indispensable driver of composite-boson behavior. The condensate fraction of fermion pairs at zero temperature that we compute matches excellently previous results obtained by means of fixed-node diffusion Monte Carlo methods and the Bogoliubov depletion approximation. This paves the way towards the exploration of the BEC-BCS crossover physics in mixtures of cold Fermi gases with an arbitrary number of fermion pairs as well as the implementation of Hong-Ou-Mandel-like interference experiments proposed within coboson theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.