Abstract

We report on the resistive memory effects of a Ag/CoFe2O4/Pt device and a deterministic conversion between volatile and nonvolatile resistive switching (RS) memory through the tuning of current compliance (I CC). For the smaller I CC (10−4 A) the device exhibits volatile RS behavior with an atomically sized conducting filament showing the quantum conductance. For an intermediate I CC (10−2 A) nonvolatile bipolar RS behavior is observed, which could originate from the formation and rupture of filament consisting of Ag ions. The high resistance state (HRS) of the device shows a semiconducting conduction mechanism, whereas the low resistance state (LRS) was found to be Ohmic in nature. The temperature dependent resistance studies and magnetization studies indicated that the electrochemical metallization plays a dominant role in the resistive switching process for volatile and nonvolatile modes through the formation of Ag conducting filaments. For higher I CC (10−1 A) the device permanently switches to LRS. The irreversible RS memory behaviors, observed for higher I CC, could be attributed to the formation of a thick and stable conducting channel formed of oxygen vacancies and Ag ions. The compliance current controlled resistive switching modes with a large memory window make the present device a potential candidate to pave the way for future resistive switching devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.