Abstract
We describe a quantitative two-dimensional gel electrophoretic analysis of nuclear extract from 24-hr sea urchin embryos. The extract was fractionated by using a weak cation-exchange resin, and eight known DNA-binding proteins were shown to be entirely included in a salt eluate that releases proteins containing basic domains. This fraction and a lower-salt fraction containing the majority of the protein species were mapped two-dimensionally by using new algorithms that permit reproducible spot identification, storage of intensity and map-position data, and subtractive comparison of one pattern with respect to another. By reference to a previously characterized DNA-binding factor, spot intensity could be interpreted in terms of the number of molecules per embryo nucleus. A map was constructed displaying all nuclear proteins containing basic domains that are present within the concentration range per nucleus of a set of known DNA-binding factors of the sea urchin embryo. The map includes 265 spots that fulfill both of these criteria, probably representing about 100 different protein species.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have