Abstract
In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange multipliers and study primal–dual first-order methods based on inexact information and augmented Lagrangian smoothing or Nesterov-type smoothing. For inexact (fast) gradient augmented Lagrangian methods, we derive an overall computational complexity of projections onto a simple primal set in order to attain an ε-optimal solution of the conic convex problem. For the inexact fast gradient method combined with Nesterov-type smoothing, we derive computational complexity projections onto the same set. Then, we assume that optimal Lagrange multipliers might not exist for the cone-constrained convex problem, and analyse the fast gradient method for solving penalty reformulations of the problem. For the fast gradient method combined with penalty framework, we also derive an overall computational complexity of projections onto a simple primal set to attain an ε-optimal solution for the original problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.