Abstract

This chapter explores a distributed model predictive control (D‐MPC) approach for optising active power of a wind farm. The control scheme is based on the fast gradient method via dual decomposition. The developed D‐MPC approach is implemented using the clustering‐based piecewise affine (PWA) wind turbine model. Wind farm control can be implemented either by the utilization of a separate energy storage device or through derated operation of the wind turbines. Model predictive control (MPC) is an effective scheme for multi‐objective wind farm control. The chapter describes the key properties required to apply the fast dual gradient method. Due to their flexible charging and discharging characteristics, energy storage system (ESSs) are considered effective tools to enhance the flexibility and controllability of wind farms. The chapter presents a case study of a wind farm comprising ten 5‐MW wind turbines that is used as the test system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.