Abstract
A food web topology describes the diversity of species and their trophic interactions, i.e. who eats whom, and structural analysis of food web topologies can provide insight into ecosystem structure and function. It appears simple, at first sight, to list all species and their trophic interactions. However, the very large number of species at low trophic levels and the impossibility to monitor all trophic interactions in the ocean makes it impossible to construct complete food web topologies. In practice, food web topologies are simplified by aggregating species into groups termed trophospecies. It is not clear though, how much simplified versions of food webs retain the structural properties of more detailed networks. Using the most comprehensive Barents Sea food web to date, we investigate the performance of methods to construct simplified food webs using three approaches: taxonomic, structural and regular clustering. We then evaluate how topological properties vary with the level of network simplification. Results show that alteration of food web structural properties due to aggregation are highly sensitive to the methodology used for grouping species and trophic links. In the specific case of the Barents Sea, we show that it is possible to preserve key structural properties of the original complex food web in simplified versions when using taxonomic or structural clustering combined with intermediate 25% linkage for trophic aggregation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have