Abstract

Blasting in geological bodies is an industrial process acting in an environment characterized by high uncertainties (natural joints, faults, voids, abrupt structural changes), which are transposed into the process parameters (e.g. energetic transfer to rock mass, hole deviations, misfires, vibrations, fly-rock, etc.). The approach to this problem searching for the “optimum” result can be ineffective. The geological environment is marked out by too many uncertainties, to have an “optimum” suitable to different applications. Researching for “Robustness” in a blast design gives rise to much more efficiency. Robustness is the capability of the system to behave constantly under varying conditions, without leading to unexpected results. Since the geology varies from site to site, setting a robust method can grant better results in varying environments, lowering the costs and increasing benefits and safety. Complexity Analysis (C.A.) is an innovative approach to systems. C.A. allows analyzing the Complexity of the Blast System and the criticality of each variable (drilling, charging and initiation parameters). The lower is the complexity, the more robust is the system, and the lower is the possibility of unexpected results. The paper presents the results obtained thanks to the C.A. approach in an underground gypsum quarry (Italy), exploited by conventional rooms and pillars method by drilling and blasting. The application of C.A. led to a reliable solution to reduce the charge per delay, hence reducing the impact of ground vibration on the surrounding structures. The analysis of the correlation degree between the variables allowed recognizing empirical laws as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.