Abstract
Abstract Complexiton solutions to the Korteweg–de Vires equation with self-consistent sources are presented. The basic technique adopted is the Darboux transformation. The resulting solutions provide evidence that soliton equations with self-consistent sources can have complexiton solutions, in addition to soliton, positon and negaton solutions. This also implies that soliton equations with self-consistent sources possess some kind of analytical characteristics that linear differential equations possess and brings ideas toward classification of exact explicit solutions of nonlinear integrable differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.