Abstract

The presence of ligands affects metal behavior when removing metals from wastewaters. So far, most of the attention has been paid to strong ligands; however, experimental observations indicate that also weaker complexing agents may play a key role in the availability of metals in waters and in the success of the treatment to be applied. In particular, we have analyzed wastewaters of an electroplating facility during an 8-h workday. Total metal content (copper, zinc, cadmium, and lead) was determined; ligands were characterized by concentration (Lt) and strength (conditional stability constant, K'f). This work focuses on ligands of moderate strength which, as far as we know, have been overlooked in the literature. A two-moderate-ligand system was used to mimic the wastewaters. N-(2-hydroxyethyl)iminodiacetic acid and nitrilotriacetic acid were used as model ligands. Electrochemical titration data (obtained by square wave anodic stripping voltammetry) were analyzed combining the Scatchard linearization method with a standard non-linear curve fitting function to focus on the resolution of two ligand families of similar strength. Correctness was tested both for the analytical procedure and data analysis. Most significant changes in metal concentration were related to zinc and lead that increased along the workday. Copper and cadmium contents were negligible. The model system and wastewater samples were successfully characterized by this methodology. Two ligand families of constants K'f1 (4.07 ± 0.69 )× 106 and K'f2 (5.56 ± 0.78) × 105 were discriminated in the micromolar range using zinc in the titration of the wastewater sample. A combined strategy involving electrochemical techniques, the Scatchard linearization, and a non-linear curve fitting function was successfully applied to the model system, within experimental error. Our main goal was to characterize two moderate ligand families of similar strength in the wastewater samples by means of the same strategy, a task that so far has not been described. The combined strategy used in this particular case may be of interest for different environmental matrixes.

Highlights

  • The presence of ligands affects metal behavior when removing metals from wastewaters

  • The problem—temporal characterization of a second rinsing bath (SRB) Samples of SRB were taken every hour during an 8-h workday to measure pH, copper, cadmium, lead, and zinc content

  • The most significant changes in metal concentration were related to zinc and lead (Fig. 1)

Read more

Summary

Introduction

The presence of ligands affects metal behavior when removing metals from wastewaters. Most of the attention has been paid to strong ligands; experimental observations indicate that weaker complexing agents may play a key role in the availability of metals in waters and in the success of the treatment to be applied. We have analyzed wastewaters of an electroplating facility during an 8-h workday. Total metal content (copper, zinc, cadmium, and lead) was determined; ligands were characterized by concentration (Lt) and strength (conditional stability constant, K'f). This work focuses on ligands of moderate strength which, as far as we know, have been overlooked in the literature. Metalfinishing industries constitute a highly sensitive sector that is responsible for important metal emissions to the environment. The use of zinc in electroplating baths is widespread. The monitoring of additives in electrolytic baths is a fundamental task for proper coatings

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.