Abstract

In this work, we report storage of oxygen in two-dimensional (2D) crystalline nanosheets comprising luminescent gold nanoclusters (Au NCs). Complexation reaction between Au NCs (stabilized by l-phenylalanine and mercaptopropionic acid) and zinc ions led to the formation of crystalline assembly of Au NCs. The crystalline nature of the assembly of Au NCs was confirmed through transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction (SAED) analysis. Atomic force microscopy (AFM) analysis, in conjunction with field emission scanning electron microscopy (FESEM) analysis, confirmed the 2D nature of the assembly of the Au NCs. The 2D crystalline nanosheets formed out of reaction between Au NCs and Zn2+ were found to be of near-uniform thickness, with an average value of 3.8 ± 1.65 nm. These 2D nanosheets constituting of hierarchically organized Au NCs were further used for reversible storage of oxygen at ambient conditions of 20 °C and 20 bar pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.