Abstract

Biosynthesized noble metal nanoparticles have been of recent interest due to their broad implications in the future biomedicinal field. We have synthesized silver nanoparticle using turmeric-extract and its major component curcumin as reducing and stabilizing agents. Further, we have investigated the protein-NPs interaction focusing the inspection of the role of biosynthesized AgNPs on any conformational changes of the protein, binding and thermodynamic parameters using spectroscopic techniques. Fluorescence quenching studies revealed that both CUR-AgNPs and TUR-AgNPs have moderate binding affinities (∼104 M-1) towards human serum albumin (HSA) and static quenching mechanism was involved in the binding. Estimated thermodynamic parameters indicate the involvement of hydrophobic forces in the binding processes. The surface charge potential of the biosynthesized AgNPs became more negative upon complexation with HSA as observed from Zeta potential measurements. Antibacterial efficacies of the biosynthesized AgNPs were evaluated against Escherichia coli (gram-negative) and Enterococcus faecalis (gram-positive) bacterial strains. The AgNPs were found to destroy the cancer (HeLa) cell lines in vitro. The overall findings of our study successfully outline the detailed insight of the protein corona formation by biocompatible AgNPs and their biological applications concerning the future scope in the biomedicinal field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call