Abstract
AbstractInteractions between niflumic acid and native and hydroxypropylated α‐ and β‐cyclodextrins (CDs) were investigated by 1H NMR, UV‐vis spectroscopy, densimetry, and calorimetry at pH = 7.4 (phosphate buffer) and T = 298.15 K. Thermodynamic parameters of 1:1 complex formation were calculated and discussed in terms of influence of cavity size and availability of hydroxypropyl substituents on the complex stability. The 1H NMR data indicated the inclusion of niflumic acid into macrocyclic cavity of all CDs under study. It was found that both phenyl and pyridine rings of niflumic acid molecule can be included in the cyclodextrin cavity. The co‐existence of two different kinds of 1:1 inclusion complexes in the solution was suggested. In spite of the fact that binding of niflumic acid with α‐cyclodextrin is more enthalpically favorable, stability of the inclusion complexes is very low due to the enthalpy–entropy compensation effect. Complex formation of β‐CDs with niflumic acid is characterized by the higher enthalpy and entropy changes caused by more intense dehydration. Introduction of hydroxypropyl groups in the cyclodextrin molecule was found to promote the binding with niflumic acid. Copyright © 2008 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have