Abstract

Interactions between the meta-substituted monosulfonated triphenylphosphine and chemically modified β-cyclodextrins were investigated in aqueous solution by NMR and UV–vis spectroscopy. Titration and continuous variation plots obtained from 31P NMR data indicate that the monosulfonated triphenylphosphine forms 1:1 inclusion complexes with the 2-hydroxypropylated β-cyclodextrin, the methylated β-cyclodextrin and the (2-hydroxy-3-trimethylammoniopropyl)-β-cyclodextrin chloride. These inclusion complexes are more stable that those formed with native β-cyclodextrin, confirming that poisoning of the chemically modified β-cyclodextrins by the hydrosoluble phosphine occurs when modified cyclodextrins are used as mass transfer promoters in aqueous-phase organometallic catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.