Abstract
The phase behaviors of the complex formed by didodecyldimethylammonium bromide (DDAB) and cetyltrimethylammonium bromide (CTAB) interacting with three different types of DNAs, salmon testes DNA (∼2000 bp), 21-bp double-stranded oligonucleotides (oligo-dsDNA), and 21-nt single-stranded oligonucleotides (oligo-ssDNA) were studied by synchrotron small-angle X-ray scattering. It was found that the DNA length and flexibility, together with the positive/negative charge ratio, determined the final structure. At higher charge ratios, the DNA length exhibited negligible effect. Both oligo-dsDNA and salmon DNA formed inverted hexagonal packing of cylinders with CTAB, as well as bilayered lamella with DDAB. However, at lower charge ratios, oligo-dsDNA formed a distorted hexagonal phase with CTAB and a new structure with DDAB, which was different from the behaviors of salmon DNA. The flexible oligo-ssDNA formed rich structures that were subject to environmental disturbance. Kinetic study also indicated that the structures of the complex formed by oligo-ssDNA took much longer to mature than the structures formed by oligo-dsDNA. We attributed this result to the conformational adjustment of oligo-ssDNA in the complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.