Abstract

Since cationic liposome was first developed as a lipofection reagent, a drawback has been noted in that the efficiency of lipofection decreases dramatically after addition of serum to the lipofection medium. This drawback hampers the application of cationic liposome for systematic delivery of genes. In the present studies, we found that the effect of serum on DC-chol liposome-mediated lipofection is dependent on the charge ratio of liposome to DNA. Serum inhibited lipofection activity of the lipoplex at low charge ratios, whereas it enhanced the lipofection activity at high charge ratios. This phenomenon was observed using DOTAP/DOPE but not lipofectamine. Measurement of cellular association of DNA showed that serum could reduce the binding of lipoplex to cells at all tested charge ratios, i.e. 0-10.6. Removal of negatively charged proteins from serum by DEAE Sephacel column abolished the inhibitory effect of serum on lipofection. The fraction contained only negatively charged serum proteins which strongly inhibited lipofection at low charge ratios but not at higher charge ratios. Furthermore, preincubation of serum with positively charged polylysine, which neutralized negatively charged serum proteins, eliminated the inhibitory effect of serum on lipofection. In summary, inactivation of cationic liposome by serum is due to negatively charged serum proteins and it can be overcome by increasing charge ratio of cationic liposome-DNA lipoplexes or by neutralizing the serum with polylysine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.