Abstract
In two former papers, the authors independently proved that the space of hyperbolic cone-3-manifolds with cone angles less than 2{\pi} and fixed singular locus is locally parametrized by the cone angles. In this sequel, we investigate the local shape of the deformation space when the singular locus is no longer fixed, i.e. when the singular vertices can be split. We show that the different possible splittings correspond to specific pair-of-pants decompositions of the smooth parts of the links of the singular vertices, and that under suitable assumptions the corresponding subspace of deformations is parametrized by the cone angles of the original edges and the lengths of the new ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.