Abstract

This paper gives an exposition of the authors' harmonic deformation theory for 3-dimensional hyperbolic cone-manifolds. We discuss topological applications to hyperbolic Dehn surgery as well as recent applications to Kleinian group theory. A central idea is that local rigidity results (for deformations fixing cone angles) can be turned into effective control on the deformations that do exist. This leads to precise analytic and geometric versions of the idea that hyperbolic structures with short geodesics are close to hyperbolic structures with cusps. The paper also outlines a new harmonic deformation theory which applies whenever there is a sufficiently large embedded tube around the singular locus, removing the previous restriction to cone angles at most 2π.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.