Abstract
Bi1−xSbx alloys are classic thermoelectric materials for near-cryogenic applications. Despite more than half a century of study, unraveling the underlying transport physics within this space has been nontrivial due to the complex electronic structure, disorder, and small bandgap within these alloys. Furthermore, as Peltier coolers, Bi1−xSbx alloys operate in a bipolar regime; as such, understanding the impact of minority carriers is critical for further improvements in device performance. This study unites first principles calculations with low-temperature experimental measurements to create a generalized model for transport within semiconducting Bi-Sb alloys. Our exploration reveals the interplay between the complex, degenerate valence band structure with the extremely light conduction bands. By building a hybrid computational/experimental model, an understanding of both the electron and hole relaxation times emerges both as a function of temperature and energy. Special quasi-random supercell calculations reveal that, despite significant atomic disorder, the electronic band structures within the alloy remains largely unaffected and electron–phonon scattering dominates. For charge carriers near the band edges, the relaxation times are thus extremely long, consistent with cyclotronic behavior appearing at low magnetic fields (≪ 1 T). Modeling thermoelectric performance suggests that the valence band edge deformation potential is significantly weaker and highlights the potential for p-type compositions to meet or exceed the current n-type alloys.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have