Abstract
It is well known that on any Lie group, a left-invariant Riemannian structure can be defined. For other left-invariant geometric structures, for example, complex, symplectic, or contact structures, there are difficult obstructions for their existence, which have still not been overcome, although a lot of works were devoted to them. In recent years, substantial progress in this direction has been made; in particular, classification theorems for low-dimensional groups have been obtained. This paper is a brief review of left-invariant complex, symplectic, pseudo-Kahlerian, and contact structures on low-dimensional Lie groups and classification results for Lie groups of dimension 4, 5, and 6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.