Abstract

With the aid of nanosecond time-resolved X-ray diffraction techniques, we have explored the complex structural dynamics of bismuth under laser-driven compression. The results demonstrate that shocked bismuth undergoes a series of structural transformations involving four solid structures: the Bi-I, Bi-II, Bi-III, and Bi-V phases. The transformation from the Bi-I phase to the Bi-V phase occurs within 4 ns under shock compression at ∼11 GPa, showing no transient phases with the available experimental conditions. Successive phase transitions (Bi-V → Bi-III → Bi-II → Bi-I) during the shock release within 30 ns have also been resolved, which were inaccessible using other dynamic techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call