Abstract

The field of complex network clustering has been very active in the past several years. In this paper, a discrete framework of the particle swarm optimization algorithm is proposed. Based on the proposed discrete framework, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the network clustering problem. The decomposition mechanism is adopted. A problem-specific population initialization method based on label propagation and a turbulence operator are introduced. In the proposed method, two evaluation objectives termed as kernel k-means and ratio cut are to be minimized. However, the two objectives can only be used to handle unsigned networks. In order to deal with signed networks, they have been extended to the signed version. The clustering performances of the proposed algorithm have been validated on signed networks and unsigned networks. Extensive experimental studies compared with ten state-of-the-art approaches prove that the proposed algorithm is effective and promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.