Abstract
We use molecular dynamics to characterize the martensitic nanostructure that develops when bcc Zr nanowires are cooled down and transform to hcp (martensite). We find that size has a strong effect on nanostructure and even very small wires (a few nanometers in diameter) exhibit complex, multidomain structures with large internal strains (up to $\ensuremath{\sim}6\mathrm{%}$). Long and thin wires result in domains coexisting along their axes while those with small aspect ratios exhibit coexistence of domains within their cross-section. We also that find regions of fcc Zr that develop to bridge neighboring hcp domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.