Abstract

Numerous studies implicate the sinoatrial node (SAN) as a participant in atrial arrhythmias, including atrial flutter (AFL) and atrial fibrillation (AF). However, the direct role of the SAN has never been described. The SAN was optically mapped in coronary perfused preparations from normal canine hearts (n=17). Optical action potentials were recorded during spontaneous rhythm, overdrive atrial pacing, and AF/AFL induced by acetylcholine (ACh; 0.3 to 3 micromol/L) and/or isoproterenol (Iso; 0.2 to 1 micromol/L). An optical action potential multiple component algorithm and dominant frequency analysis were used to reconstruct SAN activation and to identify specialized sinoatrial conduction pathways. Both ACh and Iso facilitated pacing-induced AF/AFL by shortening atrial repolarization. The entire SAN structure created a substrate for macroreentry with 9.6+/-1.7 Hz (69 episodes in all preparations). Atrial excitation waves could enter the SAN through the sinoatrial conduction pathways and overdrive suppress the node. The sinoatrial conduction pathways acted as a filter for atrial waves by slowing conduction and creating entrance block. ACh/Iso modulated filtering properties of the sinoatrial conduction pathways by increasing/decreasing the degree of the entrance block, respectively. Thus, the SAN could beat independently from AF/AFL reentrant activity during ACh (49+/-39%) and ACh/Iso (62+/-25%) (P=0.38). Without ACh, the AF/AFL waves captured the SAN and overdrive suppressed it. Spontaneous SAN activity could terminate or convert AFL to AF during cholinergic withdrawal. The specialized structure of the SAN can be a substrate for AF/AFL. Cholinergic stimulation not only can slow sinus rhythm and facilitate AF/AFL but also protects the intrinsic SAN function from the fast AF/AFL rhythm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.