Abstract
Local activation in a one-dimensional three-component reaction-diffusion model of blood clotting may lead to a formation of spatially localized standing structures (peaks) via several complex scenarios. In the first scenario, two concentration pulses first propagate from the site of activation, then stop and transform into peaks [Zarnitsina et al., Chaos 11, 57 (2001)]. Here, we examine this scenario, and also describe a different scenario of peak formation. In this scenario, two trigger waves propagate initially in opposite directions away from the site of activation. Then they stop and change direction of propagation toward each other to the activation site, where they interact and form a peak. Both of these scenarios of stable peak formation are observed in the vicinity of saddle-node bifurcation and may be viewed as a memory of the extinct wave modes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have