Abstract

<p style='text-indent:20px;'>In this paper, the nonlinear dynamics of a SIRS epidemic model with vertical transmission rate of neonates, nonlinear incidence rate and nonlinear recovery rate are investigated. We focus on the influence of public available resources (especially the number of hospital beds) on disease control and transmission. The existence and stability of equilibria are analyzed with the basic reproduction number as the threshold value. The conditions for the existence of transcritical bifurcation, Hopf bifurcation, saddle-node bifurcation, backward bifurcation and the normal form of Bogdanov-Takens bifurcation are obtained. In particular, the coexistence of limit cycle and homoclinic cycle, and the coexistence of stable limit cycle and unstable limit cycle are also obtained. This study indicates that maintaining enough number of hospital beds is very crucial to the control of the infectious diseases no matter whether the immunity loss population are involved or not. Finally, numerical simulations are also given to illustrate the theoretical results.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.